

# Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

# Humlan two-seater sofa with variants





**Owner of the declaration:** NC Nordic Care AB

**Product:** Humlan two-seater sofa with variants

**Declared unit:** 1 pcs

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 026:2022 Part B for Furniture

**Program operator:** The Norwegian EPD Foundation

Declaration number: NEPD-7080-6475-EN

**Registration number:** NEPD-7080-6475-EN

**Issue date:** 08.07.2024

Valid to: 08.07.2029

ver-311224

EPD software: LCAno EPD generator ID: 420688

The Norwegian EPD Foundation



# **General information**

**Product** Humlan two-seater sofa with variants

#### Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no

## **Declaration number:**

NEPD-7080-6475-EN

## This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 026:2022 Part B for Furniture

## Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

#### Declared unit:

1 pcs Humlan two-seater sofa with variants

#### Declared unit (cradle to gate) with option:

A1-A3,A4,A5,B2,B3,B4,C1,C2,C3,C4,D

#### **Functional unit:**

Humlan sofa - wooden frame with upholstered seat in 100% recycled polyester fabric, other fabrics available.

#### General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

## Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

#### Owner of the declaration:

NC Nordic Care AB Contact person: Moa Ulfsson Phone: +46 140 38 40 60 e-mail: moa.u@ncnordiccare.se

Manufacturer:

NC Nordic Care AB

## Place of production:

NC Nordic Care AB Ydrevägen 23, Box 30 SE 573 21 Tranås, Sweden

#### Management system:

ISO 9001, ISO 14001, ISO 45001

## **Organisation no:**

556249-9177

## Issue date:

08.07.2024

Valid to: 08.07.2029

## Year of study:

2023

#### **Comparability:**

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

#### Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Moa Ulfsson

Reviewer of company-specific input data and EPD: Per Wikström

**Approved:** 

Håkon Hauan Managing Director of EPD-Norway



# Product

#### **Product description:**

Humlan is an inclusive and welcoming furniture family with sofas, armchairs and chairs in soft and rounded shapes that break up the square room and create a soft and inviting environment.

Humlan has removable upholstered on the seat, as well a gap between the seat and the back which simplifies cleaning. Humlan is suitable for public environments such as waiting rooms and social rooms.

The Humlan family is designed to be long lasting, all components can be easily replaced, which makes it circular and sustainable in the long term. For more information please visit our webpage:

https://www.ncnordiccare.se/en/products/armchairs-sofas/humlan-374/

#### **Product specification**

Humlan

Sofa made of solid wood and upholstered seat. The Humlan family are available in a few different models and colours. This EPD is valid for the following options:

- Frame in solid wood, produced in oak or FSC®-certified birch.

- Clear lacquer, stained black or white. Other colours on request.

This EPD Includes the following variants:

Humlan 371 armchair - wooden frame, upholstered seat and back with 100 % recycled polyester fabric.

Humlan 371-1 armchair swivel stand - wooden frame, upholstered seat and back with 100 % recycled polyester fabric.

Humlan 372 armchair high back - wooden frame, upholstered seat and back with 100 % recycled polyester fabric.

Humlan 372-1 armchair high back swivel stand - wooden frame, upholstered seat and back with 100 % recycled polyester fabric.

Humlan 376 footrest - wooden frame, upholstered seat and back with 100 % recycled polyester fabric.

Humlan 377 three-seater sofa - wooden frame, upholstered seat and back with 100 % recycled polyester fabric.

| Materials                       | kg    | %      | Recycled share in<br>material (kg) | Recycled share in<br>material (%) |
|---------------------------------|-------|--------|------------------------------------|-----------------------------------|
| Glue for wood                   | 0,10  | 0,35   | 0,00                               | 0,00                              |
| Paint, water-based              | 0,30  | 1,06   | 0,00                               | 0,00                              |
| Plastic -<br>Polypropylene (PP) | 0,06  | 0,19   | 0,00                               | 0,00                              |
| Plastic -<br>Polyurethane (PUR) | 4,17  | 14,72  | 0,00                               | 0,00                              |
| Wood - Solid<br>beech/birch     | 5,00  | 17,65  | 0,00                               | 0,00                              |
| Metal - Steel                   | 1,45  | 5,12   | 0,29                               | 20,00                             |
| Cardboard                       | 1,50  | 5,30   | 0,00                               | 0,00                              |
| Textile - Polyester             | 3,25  | 11,47  | 3,25                               | 100,00                            |
| Wood - Plywood                  | 12,50 | 44,13  | 0,00                               | 0,00                              |
| Total                           | 28,33 | 100,00 | 3,54                               |                                   |

## Technical data:

Total weight: 28,13 kg (packaging excluded) Gross weight: 29,93kg (packaging included)

#### DIMENSIONS

Height: 82 cm Width: 147 cm Depth: 64 cm Seat height: 47 cm Seat depth: 47 cm

#### Market:

Mainly Europe, but is available worldwide.

#### **Reference service life, product**

15 years' service life, 5 years warrant if no other indicated.

Reference service life, building

## LCA: Calculation rules

Declared unit:



1 pcs Humlan two-seater sofa with variants

## **Cut-off criteria:**

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

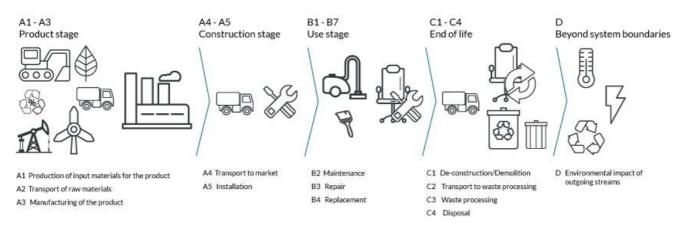
## Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

## Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below. Specific data for the manufacturing processes (product stage A3) refers to the year 2023. All other specific data is from year of study.

| Materials                    | Source                 | Data quality | Year |
|------------------------------|------------------------|--------------|------|
| Cardboard                    | Modified ecoinvent 3.6 | Database     | 2019 |
| Glue for wood                | ecoinvent 3.6          | Database     | 2019 |
| Metal - Steel                | ecoinvent 3.6          | Database     | 2019 |
| Paint, water-based           | ecoinvent 3.6          | Database     | 2019 |
| Plastic - Polypropylene (PP) | ecoinvent 3.6          | Database     | 2019 |
| Plastic - Polyurethane (PUR) | ecoinvent 3.6          | Database     | 2019 |
| Textile - Polyester          | SCS-EPD-08784          | EPD          | 2020 |
| Wood - Plywood               | modified ecoinvent 3.6 | Database     | 2019 |
| Wood - Solid beech/birch     | modified ecoinvent 3.6 | Database     | 2019 |




# System boundaries (X=included, MND=module not declared, MNR=module not relevant)

|     | Product stage |           |               |           | uction<br>ion stage | Use stage |               |        |             |               | End of I                     | ife stage                |                                   | Beyond the system<br>boundaries |                     |          |                                        |
|-----|---------------|-----------|---------------|-----------|---------------------|-----------|---------------|--------|-------------|---------------|------------------------------|--------------------------|-----------------------------------|---------------------------------|---------------------|----------|----------------------------------------|
| Raw | materials     | Transport | Manufacturing | Transport | Assembly            | Use       | Mainten an ce | Repair | Replacement | Refurbishment | Operational<br>energy<br>use | Operational<br>water use | De-<br>construction<br>demolition | Transport                       | Waste<br>processing | Disposal | Reuse-Recovery-<br>Recycling-potential |
| A   | 41            | A2        | A3            | A4        | A5                  | B1        | B2            | B3     | B4          | B5            | B6                           | B7                       | C1                                | C2                              | C3                  | C4       | D                                      |
|     | Х             | Х         | Х             | Х         | Х                   | MND       | Х             | Х      | Х           | MND           | MND                          | MND                      | Х                                 | Х                               | Х                   | Х        | Х                                      |

## System boundary:

The flow chart below illustrates the system boundaries of the analysis.



#### Additional technical information:

Certifications:

Humlan family is FSC®-certified (FSC®C010544) in birch.

Humlan is certified according to Swedish Möbelfakta requirements. Möbelfakta is a type 1 eco-label according to ISO 14024. https://www.mobelfakta.se/about.html

#### Fulfilled technical standards:

Humlan chair is tested according to EN 16139:2013 Furniture – Strength, durability and safety – Requirements for non-domestic seating.

#### Fulfilled fire requirements, for upholstered variants:

EN 1021-1 Assessment of the ignitability of upholstered furniture – Part 1: Ignition source smouldering cigarette, with Möbelfakta certified fabrics, EN 1021-2 Assessment of the ignitability of upholstered furniture – Part 2: Ignition source match flame equivalent, with Möbelfakta certified fabrics.



# LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

NC Nordic Care AB, at our site in Tranås, we only use electricity from renewable sources such as bioenergy 49 %, hydroelectricity 27 %, wind 23 %, 1 % sun and 100 % bioenergy for local heating (figures from 2023).

The product is shipped to the consumer in Kinnarps' trucks with blankets and cardboard sheets as packaging material which is returned to the factory after delivery and reused. This method saves 270 kg of packaging material per container and enables 50% more products to be transported in each truck. Kinnarps' trucks have a load efficiency of approximately 87 % and are run on diesel with renewable content. For more information about sustainability at Kinnarps, visit https://www.kinnarps.com/about-kinnarps/sustainability/.

The maintenance scenario includes vaccum cleaning of textiles once a week for the whole reference service life.

In normal use, no repair or replacement is required during the product's referenced service life.

| Transport from production place to user (A4)                                                                   | Capacity utilisation<br>(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|-------------------------|-------|------------------------|
| Truck, 16-32 tonnes, HVO, EURO 6 (kgkm)                                                                        | 36,7 %                                   | 300           | 0,043                   | l/tkm | 12,90                  |
| Maintenance (B2)                                                                                               | Unit                                     | Value         |                         |       |                        |
| Electricity, European average (kWh)                                                                            | kWh                                      | 11,70         |                         |       |                        |
| Transport to waste processing (C2)                                                                             | Capacity utilisation<br>(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |
| Truck, 16-32 tonnes, EURO 6 (km)                                                                               | 36,7 %                                   | 55            | 0,043                   | l/tkm | 2,37                   |
| Waste processing (C3)                                                                                          | Unit                                     | Value         |                         |       |                        |
| Waste treatment per kg Textile, incineration with fly ash extraction (kg)                                      | kg                                       | 3,25          |                         |       |                        |
| Waste treatment per kg Polyurethane (PU),<br>incineration (kg)                                                 | kg                                       | 4,17          |                         |       |                        |
| Waste treatment per kg Wood, incineration with fly ash extraction (kg)                                         | kg                                       | 17,50         |                         |       |                        |
| Waste treatment per kg Hazardous waste,<br>incineration (kg)                                                   | kg                                       | 0,10          |                         |       |                        |
| Waste, materials to recycling (kg)                                                                             | kg                                       | 0,49          |                         |       |                        |
| Waste treatment per kg Scrap steel, incineration with fly ash extraction (kg)                                  | kg                                       | 1,45          |                         |       |                        |
| Waste treatment per kg Polypropylene (PP),<br>incineration with fly ash extraction - C3 (kg)                   | kg                                       | 0,055         |                         |       |                        |
| Waste treatment per kg Paperboard, incineration with fly ash extraction - C3 (kg)                              | kg                                       | 1,50          |                         |       |                        |
| Disposal (C4)                                                                                                  | Unit                                     | Value         |                         |       |                        |
| Landfilling of ashes from incineration of Textile, soiled, process per kg ashes and residues (kg)              | kg                                       | 0,16          |                         |       |                        |
| Landfilling of ashes from incineration of<br>Polyurethane (PU), process per kg ashes and<br>residues - C4 (kg) | kg                                       | 0,15          |                         |       |                        |
| Landfilling of ashes from incineration of Wood, process per kg ashes and residues (kg)                         | kg                                       | 0,20          |                         |       |                        |
| Landfilling of ashes from incineration of<br>Hazardous waste, from incineration (kg)                           | kg                                       | 0,018         |                         |       |                        |
| Landfilling of ashes and residues from<br>incineration of Scrap steel (kg)                                     | kg                                       | 0,95          |                         |       |                        |
| Landfilling of ashes from incineration of<br>Polypropylene, PP, process per kg ashes and<br>residues - C4 (kg) | kg                                       | 0,0016        |                         |       |                        |
| Landfilling of ashes from incineration of<br>Paperboard, process per kg ashes and residues -<br>C4 (kg)        | kg                                       | 0,026         |                         |       |                        |
| Benefits and loads beyond the system boundaries (D)                                                            | Unit                                     | Value         |                         |       |                        |
| Substitution of electricity, in Norway (MJ)                                                                    | MJ                                       | 22,29         |                         |       |                        |
| Substitution of thermal energy, district heating, in Norway (MJ)                                               | MJ                                       | 337,27        |                         |       |                        |
| Substitution of primary steel with net scrap (kg)                                                              | kg                                       | 0,39          |                         |       |                        |



# LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

| Environme | Environmental impact             |    |                        |     |           |          |          |          |           |  |  |  |
|-----------|----------------------------------|----|------------------------|-----|-----------|----------|----------|----------|-----------|--|--|--|
|           | Indicator                        |    | Unit                   |     | A1-A3     | A4       | A5       | B2       | B3        |  |  |  |
| P         | GWP-total                        |    | kg CO <sub>2</sub> -e  | pd  | 5,28E+01  | 3,28E-01 | 0        | 5,01E+00 | 0         |  |  |  |
| (j)       | GWP-fossil                       |    | kg CO <sub>2</sub> -eq |     | 8,28E+01  | 3,27E-01 | 0        | 4,96E+00 | 0         |  |  |  |
| P         | GWP-biogenic                     |    | kg CO <sub>2</sub> -e  | eq  | -3,05E+01 | 5,55E-04 | 0        | 3,49E-02 | 0         |  |  |  |
| P         | GWP-luluc                        |    | kg CO <sub>2</sub> -e  | eq  | 5,71E-01  | 5,10E-04 | 0        | 1,15E-02 | 0         |  |  |  |
| Ò         | ODP                              |    | kg CFC11 -             | eq  | 7,78E-06  | 6,75E-08 | 0        | 4,20E-07 | 0         |  |  |  |
| (E)       | АР                               |    | mol H+ -e              | eq  | 4,72E-01  | 2,30E-03 | 0        | 2,90E-02 | 0         |  |  |  |
|           | EP-FreshWater                    |    | kg P -ec               | I   | 1,37E-02  | 1,20E-05 | 0        | 5,30E-04 | 0         |  |  |  |
|           | EP-Marine                        |    | kg N -ec               | 1   | 1,02E-01  | 6,07E-04 | 0        | 3,68E-03 | 0         |  |  |  |
| -         | EP-Terrestial                    |    | mol N -e               | q   | 1,01E+00  | 6,79E-03 | 0        | 4,53E-02 | 0         |  |  |  |
|           | POCP                             |    | kg NMVOC               | -eq | 3,11E-01  | 2,49E-03 | 0        | 1,15E-02 | 0         |  |  |  |
| E.        | ADP-minerals&metals <sup>1</sup> |    | kg Sb-eq               |     | 1,15E-03  | 3,98E-05 | 0        | 3,64E-05 | 0         |  |  |  |
| B         | ADP-fossil <sup>1</sup>          |    | MJ                     |     | 1,19E+03  | 6,93E+00 | 0        | 1,02E+02 | 0         |  |  |  |
| <b>%</b>  | WDP <sup>1</sup>                 |    | m <sup>3</sup>         |     | 5,08E+03  | 2,05E+01 | 0        | 1,54E+03 | 0         |  |  |  |
|           | Indicator                        |    | Unit                   | B4  | C1        | C2       | C3       | C4       | D         |  |  |  |
| P         | GWP-total                        |    | kg CO <sub>2</sub> -eq | 0   | 0         | 2,53E-01 | 4,82E+01 | 4,32E-02 | -2,46E+00 |  |  |  |
| P         | GWP-fossil                       |    | kg CO <sub>2</sub> -eq | 0   | 0         | 2,53E-01 | 1,19E+01 | 4,31E-02 | -2,39E+00 |  |  |  |
| P         | GWP-biogenic                     |    | kg CO <sub>2</sub> -eq | 0   | 0         | 1,05E-04 | 3,63E+01 | 4,37E-05 | -4,28E-03 |  |  |  |
| P         | GWP-luluc                        |    | kg CO <sub>2</sub> -eq | 0   | 0         | 8,99E-05 | 1,66E-04 | 7,58E-06 | -6,76E-02 |  |  |  |
| Ò         | ODP                              | k  | g CFC11 -eq            | 0   | 0         | 5,72E-08 | 1,06E-07 | 6,10E-09 | -1,42E-01 |  |  |  |
| Ê         | АР                               |    | mol H+ -eq             | 0   | 0         | 7,26E-04 | 1,36E-02 | 1,73E-04 | -1,83E-02 |  |  |  |
| æ         | EP-FreshWater                    |    | kg P -eq               | 0   | 0         | 2,02E-06 | 1,32E-05 | 5,17E-07 | -2,00E-04 |  |  |  |
|           | EP-Marine                        |    | kg N -eq               | 0   | 0         | 1,44E-04 | 7,21E-03 | 5,63E-05 | -5,71E-03 |  |  |  |
|           | EP-Terrestial                    |    | mol N -eq              | 0   | 0         | 1,61E-03 | 7,07E-02 | 6,35E-04 | -6,15E-02 |  |  |  |
|           | РОСР                             | kg | NMVOC -eq              | 0   | 0         | 6,16E-04 | 1,69E-02 | 1,78E-04 | -1,79E-02 |  |  |  |
| 624       | ADP-minerals&metals <sup>1</sup> |    | kg Sb-eq               | 0   | 0         | 6,98E-06 | 3,97E-06 | 3,22E-07 | -2,69E-05 |  |  |  |
| æ         | ADP-fossil <sup>1</sup>          |    | MJ                     | 0   | 0         | 3,82E+00 | 7,69E+00 | 4,89E-01 | -3,16E+01 |  |  |  |
| %         | WDP <sup>1</sup>                 |    | m <sup>3</sup>         | 0   | 0         | 3,70E+00 | 2,17E+01 | 3,80E+00 | -3,26E+02 |  |  |  |

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

**Remarks to environmental impacts** 



| Additional er | nvironmental impa   | ct indicators     |    |          |          |          |          |           |
|---------------|---------------------|-------------------|----|----------|----------|----------|----------|-----------|
|               | Indicator           | Unit              |    | A1-A3    | A4       | A5       | B2       | B3        |
|               | PM                  | Disease incidence |    | 8,46E-06 | 7,60E-08 | 0        | 7,60E-08 | 0         |
|               | IRP <sup>2</sup>    | kgBq U235 -eq     |    | 3,90E+00 | 2,26E-02 | 0        | 8,97E-01 | 0         |
|               | ETP-fw <sup>1</sup> | CTUe              |    | 2,67E+03 | 1,01E+01 | 0        | 7,17E+01 | 0         |
| 40.*<br>****  | HTP-c <sup>1</sup>  | CTUh              |    | 1,22E-07 | 0,00E+00 | 0        | 2,00E-09 | 0         |
| 48<br>E       | HTP-nc <sup>1</sup> | CTUh              |    | 1,48E-06 | 1,69E-08 | 0        | 6,91E-08 | 0         |
|               | SQP <sup>1</sup>    | dimensionless     |    | 3,70E+03 | 1,29E+01 | 0        | 2,47E+01 | 0         |
| h             | ndicator            | Unit              | B4 | C1       | C2       | C3       | C4       | D         |
|               | PM                  | Disease incidence | 0  | 0        | 1,55E-08 | 7,38E-08 | 2,46E-09 | -1,01E-06 |
| ()•0)<br>E    | IRP <sup>2</sup>    | kgBq U235 -eq     | 0  | 0        | 1,67E-02 | 1,55E-02 | 2,19E-03 | -1,77E-01 |
|               | ETP-fw <sup>1</sup> | CTUe              | 0  | 0        | 2,83E+00 | 4,06E+01 | 6,64E-01 | -1,76E+02 |
| 40.*<br>****  | HTP-c <sup>1</sup>  | CTUh              | 0  | 0        | 0,00E+00 | 1,79E-09 | 3,20E-11 | -4,87E-09 |
| 88 <u>B</u>   | HTP-nc <sup>1</sup> | CTUh              | 0  | 0        | 3,09E-09 | 7,18E-08 | 1,12E-09 | -1,01E-07 |
| è             | SQP <sup>1</sup>    | dimensionless     | 0  | 0        | 2,67E+00 | 1,20E+00 | 1,28E+00 | -1,87E+02 |

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.



| Resource use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                                             |                                      |                                 |                                                                                  |                                                                                      |                                                                                  |                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indicator                                             |                                                                                             | Unit                                 | A1-A3                           | A4                                                                               | A5                                                                                   | B2                                                                               | B3                                                                                   |
| i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PERE                                                  |                                                                                             | MJ                                   | 7,33E+02                        | 3,14E-01                                                                         | 0                                                                                    | 1,98E+01                                                                         | 0                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERM                                                  |                                                                                             | MJ                                   | 2,76E+02                        | 0,00E+00                                                                         | 0                                                                                    | 0,00E+00                                                                         | 0                                                                                    |
| °≓j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERT                                                  |                                                                                             | MJ                                   | 1,01E+03                        | 3,14E-01                                                                         | 0                                                                                    | 1,98E+01                                                                         | 0                                                                                    |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PENRE                                                 |                                                                                             | MJ                                   | 1,09E+03                        | 6,93E+00                                                                         | 0                                                                                    | 1,03E+02                                                                         | 0                                                                                    |
| Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PENRM                                                 |                                                                                             | MJ                                   | 3,14E+02                        | 0,00E+00                                                                         | 0                                                                                    | 0,00E+00                                                                         | 0                                                                                    |
| IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PENRT                                                 |                                                                                             | MJ                                   | 1,40E+03                        | 6,93E+00                                                                         | 0                                                                                    | 1,03E+02                                                                         | 0                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SM                                                    |                                                                                             | kg                                   | 3,54E+00                        | 0,00E+00                                                                         | 0                                                                                    | 0,00E+00                                                                         | 0                                                                                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSF                                                   |                                                                                             | MJ                                   | 2,61E+00                        | 1,02E-02                                                                         | 0                                                                                    | 1,45E+00                                                                         | 0                                                                                    |
| Ĩ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NRSF                                                  |                                                                                             | MJ                                   | 1,52E+00                        | 3,51E-02                                                                         | 0                                                                                    | 3,44E-01                                                                         | 0                                                                                    |
| ٩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FW                                                    |                                                                                             | m <sup>3</sup>                       | 1,64E+00                        | 2,83E-03                                                                         | 0                                                                                    | 8,69E-02                                                                         | 0                                                                                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndicator                                              |                                                                                             |                                      |                                 |                                                                                  |                                                                                      |                                                                                  |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndicator                                              | Unit                                                                                        | B4                                   | C1                              | C2                                                                               | C3                                                                                   | C4                                                                               | D                                                                                    |
| i.<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PERE                                                  | Unit<br>MJ                                                                                  | B4<br>0                              | C1<br>0                         | C2<br>5,47E-02                                                                   | C3<br>3,70E-01                                                                       | C4<br>2,22E-02                                                                   |                                                                                      |
| in the second se |                                                       |                                                                                             |                                      |                                 |                                                                                  |                                                                                      |                                                                                  |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERE                                                  | MJ                                                                                          | 0                                    | 0                               | 5,47E-02                                                                         | 3,70E-01                                                                             | 2,22E-02                                                                         | -1,73E+02<br>0,00E+00                                                                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PERE                                                  | MJ                                                                                          | 0                                    | 0                               | 5,47E-02<br>0,00E+00                                                             | 3,70E-01<br>-2,76E+02                                                                | 2,22E-02<br>0,00E+00                                                             | -1,73E+02<br>0,00E+00<br>-1,73E+02                                                   |
| a<br>The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PERE<br>PERM<br>PERT                                  | MJ<br>LM                                                                                    | 0 0 0                                | 0<br>0<br>0                     | 5,47E-02<br>0,00E+00<br>5,47E-02                                                 | 3,70E-01<br>-2,76E+02<br>-2,76E+02                                                   | 2,22E-02<br>0,00E+00<br>2,22E-02                                                 | -1,73E+02<br>0,00E+00<br>-1,73E+02                                                   |
| i<br>Per<br>Peri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PERE<br>PERM<br>PERT<br>PENRE                         | ۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲                                                             | 0<br>0<br>0<br>0                     | 0<br>0<br>0                     | 5,47E-02<br>0,00E+00<br>5,47E-02<br>3,82E+00                                     | 3,70E-01<br>-2,76E+02<br>-2,76E+02<br>7,74E+00                                       | 2,22E-02<br>0,00E+00<br>2,22E-02<br>4,89E-01                                     | -1,73E+02<br>0,00E+00<br>-1,73E+02<br>-3,16E+01<br>0,00E+00                          |
| 2<br>44<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PERE<br>PERM<br>PERT<br>PENRE<br>PENRM                | ۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲ | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0                | 5,47E-02<br>0,00E+00<br>5,47E-02<br>3,82E+00<br>0,00E+00                         | 3,70E-01<br>-2,76E+02<br>-2,76E+02<br>7,74E+00<br>-1,30E+02                          | 2,22E-02<br>0,00E+00<br>2,22E-02<br>4,89E-01<br>0,00E+00                         | -1,73E+02<br>0,00E+00<br>-1,73E+02<br>-3,16E+01                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERE<br>PERM<br>PERT<br>PENRE<br>PENRM<br>PENRT       | ۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲ | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0      | 5,47E-02<br>0,00E+00<br>5,47E-02<br>3,82E+00<br>0,00E+00<br>3,82E+00             | 3,70E-01<br>-2,76E+02<br>-2,76E+02<br>7,74E+00<br>-1,30E+02<br>-1,22E+02             | 2,22E-02<br>0,00E+00<br>2,22E-02<br>4,89E-01<br>0,00E+00<br>4,89E-01             | -1,73E+02<br>0,00E+00<br>-1,73E+02<br>-3,16E+01<br>0,00E+00<br>-3,16E+01             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERE<br>PERM<br>PERT<br>PENRE<br>PENRM<br>PENRT<br>SM | MJ<br>MJ<br>MJ<br>MJ<br>MJ<br>Kg                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 5,47E-02<br>0,00E+00<br>5,47E-02<br>3,82E+00<br>0,00E+00<br>3,82E+00<br>0,00E+00 | 3,70E-01<br>-2,76E+02<br>-2,76E+02<br>7,74E+00<br>-1,30E+02<br>-1,22E+02<br>0,00E+00 | 2,22E-02<br>0,00E+00<br>2,22E-02<br>4,89E-01<br>0,00E+00<br>4,89E-01<br>0,00E+00 | -1,73E+02<br>0,00E+00<br>-1,73E+02<br>-3,16E+01<br>0,00E+00<br>-3,16E+01<br>0,00E+00 |

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources; SENRE = Use of non renewable primary energy resources; SENRE = Use of non renewable primary energy resources; SENRE = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed



| End of life - Waste | End of life - Waste |      |      |       |          |          |          |          |           |  |  |
|---------------------|---------------------|------|------|-------|----------|----------|----------|----------|-----------|--|--|
|                     |                     | Ui   | nit  | A1-A3 | A4       | A5       | B2       | B3       |           |  |  |
| Â                   | HWD                 | HWD  |      | kg    |          | 9,72E-04 | 0        | 1,54E-02 | 0         |  |  |
| Ū                   | NHWD                | NHWD |      | kg    |          | 1,03E+00 | 0        | 3,47E-01 | 0         |  |  |
| æ                   | RWD                 |      | k    | g     | 2,09E-02 | 2,77E-05 | 0        | 7,32E-04 | 0         |  |  |
| In                  | dicator             |      | Unit | B4    | C1       | C2       | C3       | C4       | D         |  |  |
| à                   | HWD                 |      | kg   | 0     | 0        | 1,97E-04 | 0,00E+00 | 1,25E+00 | -3,57E-03 |  |  |
| Ū                   | NHWD                |      | kg   | 0     | 0        | 1,86E-01 | 1,00E-01 | 2,22E-01 | -8,38E-01 |  |  |
| 8                   | RWD                 |      | kg   | 0     | 0        | 2,60E-05 | 0,00E+00 | 2,65E-06 | -1,45E-04 |  |  |

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

| End of life - Output flow |                       |      |     |          |          |          |          |          |  |  |  |  |
|---------------------------|-----------------------|------|-----|----------|----------|----------|----------|----------|--|--|--|--|
| Indi                      | cator                 | Ui   | nit | A1-A3    | A4       | A5       | B2       | B3       |  |  |  |  |
| $\otimes \triangleright$  | CRU                   | k    | kg  |          | 0,00E+00 | 0        | 0,00E+00 | 0        |  |  |  |  |
| \$                        | MFR                   | k    | g   | 1,40E+00 | 0,00E+00 | 0        | 0,00E+00 | 0        |  |  |  |  |
| DF                        | MER                   | k    | kg  |          | 0,00E+00 | 0        | 0,00E+00 | 0        |  |  |  |  |
| ۶D                        | EEE                   | N    | MJ  |          | 0,00E+00 | 0        | 0,00E+00 | 0        |  |  |  |  |
| DI                        | <b>D</b> . <b>EET</b> |      | MJ  |          | 0,00E+00 | 0        | 0,00E+00 | 0        |  |  |  |  |
| Indicato                  | r                     | Unit | B4  | C1       | C2       | C3       | C4       | D        |  |  |  |  |
| $\otimes $                | CRU                   | kg   | 0   | 0        | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |  |  |  |  |
|                           | MFR                   | kg   | 0   | 0        | 0,00E+00 | 4,92E-01 | 0,00E+00 | 0,00E+00 |  |  |  |  |
| Þ₽                        | MER                   | kg   | 0   | 0        | 0,00E+00 | 2,80E+01 | 0,00E+00 | 0,00E+00 |  |  |  |  |
| ₽Þ                        | EEE                   | MJ   | 0   | 0        | 0,00E+00 | 2,16E+01 | 0,00E+00 | 0,00E+00 |  |  |  |  |
| D                         | EET                   | MJ   | 0   | 0        | 0,00E+00 | 3,28E+02 | 0,00E+00 | 0,00E+00 |  |  |  |  |

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

Biogenic Carbon Content

| Unit | At the factory gate |  |  |  |  |  |  |  |  |
|------|---------------------|--|--|--|--|--|--|--|--|
| kg C | 8,61E+00            |  |  |  |  |  |  |  |  |
| kg C | 0,00E+00            |  |  |  |  |  |  |  |  |
|      | kg C                |  |  |  |  |  |  |  |  |

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2



## **Additional requirements**

## Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

| Electricity mix                     | Source        | Amount | Unit         |
|-------------------------------------|---------------|--------|--------------|
| Electricity, European average (kWh) | ecoinvent 3.6 | 428,03 | g CO2-eq/kWh |

#### **Dangerous substances**

The product contains substances given by the REACH Candidate list that are less than 0,1 % by weight.

#### Indoor environment

The product is low-emitting and certified according to Swedish Möbelfakta.

## **Additional Environmental Information**

#### **Key Environmental Indicators**

| Key environmental indicators | Unit                   | A1-A3   | A4   | A1-C4   | A1-D    |
|------------------------------|------------------------|---------|------|---------|---------|
| GWPtotal                     | kg CO <sub>2</sub> -eq | 52,80   | 0,33 | 106,63  | 104,17  |
| Total energy consumption     | MJ                     | 1826,94 | 7,29 | 1971,01 | 1756,60 |
| Amount of recycled materials | %                      | 12,28   |      |         |         |

| Additional environmental impact indicators required in NPCR Part A for construction products |                        |      |          |          |          |          |           |  |
|----------------------------------------------------------------------------------------------|------------------------|------|----------|----------|----------|----------|-----------|--|
| Indicator                                                                                    | Unit                   | Unit |          | A4       | A5       | B2       | B3        |  |
| GWPIOBC                                                                                      | kg CO <sub>2</sub> -eq |      | 8,61E+01 | 3,28E-01 | 0        | 5,37E+00 | 0         |  |
| Indicator                                                                                    | Unit                   | B4   | C1       | C2       | C3       | C4       | D         |  |
| GWPIOBC                                                                                      | kg CO <sub>2</sub> -eq | 0    | 0        | 2,53E-01 | 1,96E+01 | 5,39E-02 | -2,65E+00 |  |

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

#### **Variants and Options**

| Key environmental indicators (A1-A3) for variants of this EPD |             |                                   |                               |                                  |  |  |  |
|---------------------------------------------------------------|-------------|-----------------------------------|-------------------------------|----------------------------------|--|--|--|
| Variants                                                      | Weight (kg) | GWPtotal (kg CO <sub>2</sub> -eq) | Total energy consumption (MJ) | Amount of recycled materials (%) |  |  |  |
| Humlan armchair                                               | 15,66       | 35,40                             | 1073,66                       | 15,21                            |  |  |  |
| Humlan armchair high back                                     | 16,14       | 46,70                             | 1168,69                       | 17,98                            |  |  |  |
| Humlan armchair high back, swivel stand                       | 16,04       | 51,21                             | 1191,50                       | 18,84                            |  |  |  |
| Humlan armchair swivel stand                                  | 14,36       | 44,28                             | 1076,60                       | 18,11                            |  |  |  |
| Humlan footrest                                               | 3,92        | 12,80                             | 390,59                        | 13,81                            |  |  |  |
| Humlan three-seater sofa                                      | 38,03       | 72,33                             | 2413,46                       | 13,01                            |  |  |  |



# Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures. ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Ruud et al., (2023) EPD generator for NPCR026 Part B for Furniture - Background information for EPD generator application and LCA data, LCA.no report number 01.23

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge. NPCR 026 Part B for Furniture. Ver. 2.0 March 2022, EPD-Norge.

| and norga               | Program operator and publisher                 |         | +47 977 22 020        |
|-------------------------|------------------------------------------------|---------|-----------------------|
| 🕲 epd-norge             | The Norwegian EPD Foundation                   | e-mail: | post@epd-norge.no     |
| Global program operatør | Post Box 5250 Majorstuen, 0303 Oslo, Norway    | web:    | www.epd-norge.no      |
| NC                      | Owner of the declaration:                      | Phone:  | +46 140 38 40 60      |
|                         | NC Nordic Care AB                              | e-mail: | moa.u@ncnordiccare.se |
|                         | Ydrevägen 23, Box 30, SE 573 21 Tranås, Sweden | web:    | www.ncnordiccare.se   |
| LCA                     | Author of the Life Cycle Assessment            | Phone:  | +47 916 50 916        |
|                         | LCA.no AS                                      | e-mail: | post@lca.no           |
|                         | Dokka 6A, 1671 Kråkerøy, Norway                | web:    | www.lca.no            |
| LCA                     | Developer of EPD generator                     | Phone:  | +47 916 50 916        |
|                         | LCA.no AS                                      | e-mail: | post@lca.no           |
| .no                     | Dokka 6A, 1671 Kråkerøy, Norway                | web:    | www.lca.no            |
| ECD PLATFORM            | ECO Platform                                   | web:    | www.eco-platform.org  |
|                         | ECO Portal                                     | web:    | ECO Portal            |